Geometry Basics
Mid-Unit 1 Review
Lessons 1-7

Distance Formula: \[d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]
Pythagorean Theorem: \[a^2 + b^2 = c^2 \]
Midpoint Formula: \[\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \]

Lesson 1 - Know the correct symbols to write a point, line, ray, segment, etc.

1. Draw one diagram that uses the following information correctly.
 a. Draw three collinear points, \(H, I, \) and \(J \) with \(I \) between \(H \) and \(J \). Add a point \(K \) between \(I \) and \(J \).

 \[\text{\begin{array}{c}
 H \\
 I \\
 K \\
 J
 \end{array}} \]

 b. Draw five noncollinear points \(M, N, O, P, \) and \(Q \).
 Then sketch \(MN, OP, PQ, MP, \) and \(NO \).

Lesson 2 - Segment Addition Postulate

2. Suppose \(J \) is between \(H \) and \(K \). Use the Segment Addition Postulate to solve for \(x \). Then find the length of each segment. SHOW WORK!

 \[HJ = 8x - 3 \]
 \[JK = 12x - 5 \]
 \[KH = 112 \]

 \[8x - 3 + 12x - 5 = 112 \]
 \[20x - 8 = 112 \]
 \[20x = 120 \]
 \[x = 6 \]
 \[\text{Answer: } HJ = 48, \ JK = 67, \ KH = 112 \]

3. \(S \) is between \(T \) and \(V \). \(R \) is between \(S \) and \(T \). \(T \) is between \(R \) and \(Q \). \(QV = 23, QT = 8, \) and \(TR = RS = SV \). Make a sketch and answer the following.

 a. Find \(RS \).
 b. Find \(QS \).
 c. Find \(TS \).
 d. Find \(TV \).

 \[\text{Answer: } RS = 5, \ QS = 18, \ TS = 10, \ TV = 15 \]
Lesson 3 – Segments on the Coordinate Plane

4. Determine if $AB \cong BC$. (Hint: find each distance and then compare)
 Use distance formula or Pythagorean Theorem. SHOW ALL WORK!!!
 $A (0, -1)$
 $B (-2, -4)$
 $C (-4, -7)$

 $AB = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$

 $BC = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13}$

 Yes, $AB \cong BC$
 because the lengths are equal.

5. Find the distance between the two points. Show all work. $(8.3, -6)$ and $(-1, 3)$.

 $\sqrt{(8.3 - (-1))^2 + (-6 - 3)^2}$
 $\sqrt{(9.3)^2 + (-9)^2}$
 $\sqrt{86.49 + 81} = \sqrt{167.49} \approx 12.94$

6. Find the perimeter of the following triangle. Show all work.

 $AB = \sqrt{4^2 + 2^2} = \sqrt{16 + 4} = \sqrt{20}$
 $BC = \sqrt{7^2 + 1^2} = \sqrt{49 + 1} = \sqrt{50}$
 $AC = \sqrt{5^2 + 5^2} = \sqrt{25 + 25} = \sqrt{50}$

 Perimeter $= \sqrt{20} + \sqrt{50} + \sqrt{50} \approx 18.01$ units
Lesson 4 – Midpoints & Partitioning (Use graph paper!!)

7. Find the coordinates of the midpoint of a segment with endpoints (-3, 5) and (5, -1).
 SHOW WORK
 \[
 \begin{align*}
 \text{ave. } x &= \frac{-3 + 5}{2} = 1 \\
 \text{ave. } y &= \frac{5 + (-1)}{2} = 2 \\
 \end{align*}
 \]
 \[
 (1, 2)
 \]

8. Find the coordinates of the missing endpoint of the segment with given endpoint (-4, 3) and midpoint (-1, -1).
 SHOW WORK
 \[
 \begin{align*}
 -4 + x &= -1 \\
 \frac{-4 + x}{2} &= -1 \\
 -4 + x &= -2 \\
 x &= 2 \\
 \end{align*}
 \]
 \[
 \begin{align*}
 3 + y &= -1 \\
 \frac{3 + y}{2} &= -1 \\
 3 + y &= -2 \\
 y &= -5 \\
 \end{align*}
 \]
 \[
 (2, -5)
 \]

9. Line segment \(\overline{JK} \) in the xy-coordinate plane has endpoints with coordinates (-4, 11) and (8, -1). If the segment is partitioned into four equal parts, select ALL the coordinate points that would be on segment \(\overline{JK} \) at a partition.
 \[
 \begin{align*}
 A. \ (2, 9) & \quad E. \ (3, 4) \\
 B. \ (-1, 8) & \quad F. \ (4, 3) \\
 C. \ (0, 7) & \quad G. \ (5, 2) \\
 D. \ (1, 6) & \quad H. \ (6, 1)
 \end{align*}
 \]

Lesson 5 – Angle Vocabulary, Angle Addition, Angle Bisectors

10. \(\overline{BD} \) bisects \(\angle ABC \). Find the value of \(x \), then find \(m\angle ABC \).
 \[
 \begin{align*}
 2x + 7 &= \angle B \\
 4x - 9 &= \angle ABC \\
 16 &= 2x \\
 x &= 8 \\
 m\angle ABC &= 41^\circ
 \end{align*}
 \]

11. \(\overline{EF} \) is the angle bisector of \(\angle TEA \). Find the two angle measures not given in the diagram.
 a. \[
 \begin{align*}
 m\angle TEF &= 35^\circ \\
 m\angle AEF &= 35^\circ
 \end{align*}
 \]
 b. \[
 \begin{align*}
 m\angle AEF &= 19^\circ \\
 m\angle TEA &= 38^\circ
 \end{align*}
 \]
12. If \(m\angle 1 = 30 \), \(m\angle 2 = 3x \), \(m\angle ABC = 145 \), and \(m\angle 3 = 5x - 5 \), find \(x \).

\[
\text{Angle Addition Postulate}
\]

\[
5x - 5 + 3x + 30 = 145
\]

\[
8x + 25 = 145
\]

\[
x = 15
\]

13. If \(m\angle YMC = 170^\circ \), find set up and solve an equation to find the measure of \(\angle AMC \).

\[
\text{Angle Addition Postulate}
\]

\[
5x + 19 + 5x + 1 = 170
\]

\[
10x + 20 = 170
\]

\[
x = 15
\]

\[
m\angle AMC = 76^\circ
\]

14. If \(m\angle AOC = 76^\circ \) and \(m\angle AOB = 41^\circ \), what is \(m\angle BOC \)?

\[
m\angle BOC = 35^\circ
\]

Lesson 6 - Angle Pair Relationships

15. Use the diagram shown.

- **Vertical a.** If \(m\angle 1 = 15^\circ \), then \(m\angle 3 = 15^\circ \)

- **Linear Pair b.** If \(m\angle 2 = 100^\circ \), then \(m\angle 1 = 80^\circ \)

- **Vertical a.** If \(m\angle 4 = 36^\circ \), then \(m\angle 2 = 36^\circ \)

16. Use the diagram above. State whether the angles are a linear pair or vertical angles.

- a. \(\angle 1 \) and \(\angle 2 \) Linear Pair

- b. \(\angle 2 \) and \(\angle 4 \) Vertical Angles
17. Find the value of the variables. Set up equations and show all work.

a.
\[2x + 5 + 75 = 180 \]
\[2x + 70 = 180 \]
\[2x = 110 \]
\[x = 55 \]

b.
\[4y + 25 + 75 = 180 \]
\[4y + 100 = 180 \]
\[4y = 80 \]
\[y = 20 \]

18. \(m \angle M = 74^\circ \).

a. If \(\angle N \) is complementary to \(\angle M \), find \(m \angle N \)? \(16^\circ \)

b. If \(\angle P \) is supplementary to \(\angle M \), find \(m \angle P \)? \(106^\circ \)

Lesson 7 – Introduction to Constructions

19. **Multiple Choice:** To create an angle bisector of angle \(ABC \), Delilah places her compass point on point \(B \) and makes an arc, intersecting both rays of the angle. Label the intersection of the arc with each angle ray as points \(X \) and \(Y \). What could be Delilah’s next step?

a. Draw a ray from point \(B \) through point \(D \), creating angle bisector \(\overline{BD} \).

b. Place the compass point on point \(X \) and make an arc in the interior of angle \(ABC \).

c. Connect point \(X \) to point \(Y \) to create \(\overline{XY} \).

d. Place the compass point on point \(Y \), open the compass with the width equal to the length of segment \(XY \), and draw an arc.